SHORT PAPER

Silica gel-supported phosphotungstic acid (PTA) catalysed acylation of alcohols and phenols with acetic anhydride under mild reaction conditions[†]

Tong-Shou Jin,* Jin-Chong Xiao, Zhen-Hua Wang and Tong-Shuang Li

Department of Chemistry, Hebei University, Baoding 071002, Hebei Province, P. R. China

Phosphotungstic acid, which is commercially available, practically and efficiently catalyses the acylation of a series of alcohols and phenols with acetic anhydride at room temperature or at refluxing temperature.

Keywords: acetylation, phosphotungstic acid, alcohol, phenol

The hydroxyl group is nucleophilic and easily oxidised by a wide range of reagents. Because it can participate in a great number of transformations under mild conditions, it is important in organic synthesis to ensure that a specific hydroxyl function in a multifunctional molecule is protected from unwanted reactions. Ester groups are the most common protective groups in organic synthesis.1 The acylation of alcohols and phenols by acetic anhydride or acetyl chloride is routinely carried out in the presence of tertiary amines such as triethylamine and pyridine.² It is well known that 4-(dimethylamino) pyridine (DMAP) and 4-pyrrolidinopyridine (PPY) can be used to catalyse the reaction and to increase the rate of acylation of alcohols.³ Tributylphosphine⁴ and iodine⁵ have also been introduced as acetyl transfer catalysts. In addition, protonic acids such as p-toluenesulfonic acid,6 sulfamic acid⁷ and Lewis acids such as zinc chloride,⁸ cobalt chloride,⁹ magnesium bromide,¹⁰ Cu(OTf)₂¹¹ TMSOTf,¹² thallium chloride,¹³ scandium trifluoromethanesulfonate,¹⁴ lithium chloride¹⁵ and lithium perchlorate¹⁶ are also known to catalyse the acylation of alcohols and phenols. Each of the methods has its merits and some shortcomings. Most of these methods cannot be entirely satisfactory; for example, triethylamine and pyridine have unpleasant odours, DMAP is not easily obtained and expensive, and tributylphosphine is irritant, highly flammable and expensive. Therefore, several solid catalysts such as montmorillonite K10, KSF,17-18 expansive graphite,¹⁹ cobalt polyoxometalate²⁰ have been used recently for the acetylation of alcohols and phenols. Even though a wide range of catalysts has been reported for the protection of the hydroxyl of alcohols and phenols, there is still a demand for efficient acid catalysts to generate esters. In this paper we wish to report a novel method for the acylation of alcohols and phenols with acetic anhydride catalysed by silica gel-supported phosphotungstic acid.

R-OH+Ac₂O R=Alkyl, Aryl silica gel-supported PTA rt or reflux R-OAc+AcOH

Scheme 1

In recent years, PTA, a kind of heteropoly acid (HPA), has been proved to be a practical and useful catalyst in a variety of organic reactions.²¹ HPA is superior to common inorganic acids due to its high reactivity, lack of odour, non-volatility and excellent stability. Reactions catalysed by phosphotungstic acid are usually carried out under mild conditions in excellent yield due

to its strong acidity. The work-up of the reactions is also very simple, involving only removal of the catalyst by filtration and of the solvent by evaporation.

As shown in Table 1, a series of alcohols and phenols are treated with acetic anhydride in the presence of silica gelsupported PTA in CHCl₂, CHCl₃, cyclohexane or solvent-free at room temperature or at refluxing temperature. Primary (1, 2, 3, 4 and 5) and secondary (6, 7, 8 and 9) alcohols can be easily acetylated at room temperature. However, the hindered tertiary alcohol shows the lowest activity. For example, triphenylmethanol (10) was treated with acetic anhydride in the presence of silica gel-supported phosphotungstic acid at higher temperature (refluxing cyclohexane) and longer reaction time (3h), but it remains unchanged. Therefore primary and secondary alcohols can be acetylated more easily than tertiary alcohols.

Phenols carrying either electron-donating or electronwithdrawing substituents can afford high yields of products at room temperature in a short time (11, 12, 13, 14, 16, 17, 18, 19, 23 and 24). When 2-nitrophenol (15) was treated with acetic anhydride in the presence of silica gel-supported PTA, conversion into 2-nitrophenyl acetate requires 3 hours at room temperature, but only 3 minutes in refluxing cyclohexane on catalysis by silica gel-supported PTA. The explanation for this result may be the presence of the intramolecular hydrogen bond in 2-nitrophenol which would reduce the activity of the molecular at room temperature, whereas heating overcomes this deactivation. Furthermore, we also find that sterically hindered phenols can give the corresponding acetate in a quantitative yield (26, 27 and 28). The temperature is quite crucial to the success of the acylation. The acetylation of 2,6-ditertbutyl-4-methyl phenol (26) requires 30 minutes at room temperature while only 5 minutes at refluxing CHCl₃. 2,4,6-Tritertbutylphenol (28) hardly reacts at room temperature in 1 hour while the reaction would be successfully performed in refluxing CHCl₃ in equal time. Polyhydroxy compounds could be transformed into the corresponding polyacetates (20, 21 and 22).

In conclusion, the catalysis by silica gel-supported phosphotungstic acid is good for the acetylation of alcohols, phenols and polyhydroxy compounds. This method offers several advantages including mild reaction conditions, cleaner reactions, high yields of products as well as simple experimental and isolation procedures which makes it a useful and attractive process for acetylation.

Experimental

^{*} To receive any correspondence. E-mail: orgsyn@mail.hbu.edu.cn

[†] This is a Short Paper, there is therefore no corresponding material in J Chem. Research (M).

Melting points and boiling points were uncorrected. The melting points were determined on a Kofler hot stage. The products were characterised by IR spectra, ¹H NMR spectra, Mass spectra and by comparison of their melting or boiling points with literature values. IR spectra were recorded on a PE-983G spectrometer. ¹H NMR

Table 1 A	cetylation of	f alcohols and	1 nheno	ls catal	haev	hy silica	ael-sunnorter	1 nhosn	hotungstic aci	Ы
	cocrynation o		i priorio	is outur	yscu	by Sillea	ger supporter	a phiosp	notungstie dei	u

Entry	y Substrate	Solvent	Yield/% ^a	Product	B.p. / torr or M.p. / °C		
		/Temp/°C /T min			Found	Reported	
1	Heptan-1-ol 1	CHCl ₃ /rt/3	96	Heptyl acetate	96–98/20	191–192/760 ²³	
2	Octan-1-ol 2	CHCl ₃ /rt/2	95	Octyl acetate	88-90/20	211.5/760 ²³	
3	Benzyl alcohol 3	CHCl ₃ /rt/7	96	Benzyl acetate	102-104/20	134/102 ²³	
4	2-Phenylethanol 4	CHCl ₃ /rt/4	97	2-Phenylethyl acetate	122-124/20	232/760 ²³	
5	Octadecan-1-ol 5	CHCl ₃ /rt/2	98	Octadecyl acetate	32–33	33 ²³	
6	Benzoin 6	CHCl ₃ /rt/5	97	Benzoin acetate	82–83	83 ²³	
7	Cyclohexanol 7	CHCl ₃ /rt/3	95	Cyclohexyl acetate	80-82/25	175/760 ²³	
8	Cholesterol 8	CHCl ₃ /rt/1	97	Cholesteryl acetate	113–114	114–115 ²³	
9	Diphenylmethanol 9	CHCl ₃ /rt/1	98	Diphenylmethyl acetate	41-42	41-42 ²³	
10	Triphenylmethanol 10	Cyclohexane /81/180		No reaction			
11	Phenol 11	CH ₂ Cl ₂ /rt/2	89	Phenyl acetate	95-96/20	196/760 ²³	
12	4-Methoxyphenol 12	CH ₂ Cl ₂ /rt/1	98	4-Methoxyphenyl acetate	31–32	32 ²²	
13	3-Methylphenol 13	None/rt/3	94	3-Methylphenyl acetate	102-104/20	212/760 ²³	
14	4-Methylphenol 14	CH ₂ Cl ₂ /rt/2	94	4-Methylphenyl acetate	102-104/20	212-213/760 ²³	
15	2-Nitrophenol 15	Cyclohexane /81/3	88	2-Nitrophenyl acetate	39–40	40-41 ²³	
16	3-Nitrophenol 16	CH ₂ Cl ₂ /rt/3	96	3-Nitrophenyl acetate	55–56	55–56 ²³	
17	4-Nitrophenol 17	CH ₂ Cl ₂ /rt/1	97	4-Nitrophenyl acetate	80-82	81–82 ²³	
18	4-Chlorophenol 18	CH ₂ Cl ₂ /rt/1	94	4-Chlorophenyl acetate	106-108/20	226-228/760 ²³	
19	2,4-Dichlorophenol 19	CH ₂ Cl ₂ /rt/5	95	2,4-Dichlorophenyl acetate	124-126/20	244-245/760 ²³	
20	Catechol 20	None/rt/1	92	Benzene-1,2-diyl diacetate	62–63	63.5 ²³	
21	Resorcinol 21	None/rt/1	84	Benzene-1,3-diyl diacetate	158-160/20	278/760 ²³	
22	Hydroquinone 22	CHCl ₃ /rt/1	95	Benzene-1,4-diyl diacetate	121-122	123–124 ²³	
23	1-Naphthol 23	CHCl ₃ /rt/2	90	1-Naphthyl acetate	48-49	48–49 ²³	
24	2-Naphthol 24	CH ₂ Cl ₂ /rt/1	98	2-Naphthyl acetate	69–70	70 ²³	
25	4-Hydroxybenzoic acid 25	CHCl ₃ /62/9	95	4-Acetoxybenzoic acid	186–187	187–188 ²³	
26	2,6-Ditertbutyl-4-methylphenol 26	CHCl ₃ /rt/30	98	2,6 -Di-tertbutyl-4-methyl phenyl acetate ^b	64–65		
27	2,6-Ditertbutyl-4-methylphenol 27	CHCl ₃ /62/5	98	2,6 -Di-tertbutyl-4-methyl phenyl acetate ^b	64–65		
28	2,4,6-Tritertbutylphenol 28	CHCl ₃ /62/60	95	2,4,6-Tritertbutylphenyl acetate b	109–110		

^aYields refer to isolated products.

^bThe structural assignment here must formally be regarded as tentative in the absence of literature or full characterisation data.

spectra were determined on Bruker 300(300 MHz), using CDCl₃ as solvent and tetramethylsilane (TMS) as internal reference. Mass spectra were measured on a VG-7070E spectrometer (EI, 70eV). All used chemicals were obtained commercially.

The preparation of catalyst: PTA (10g) was dissolved in diethyl ether (50ml), and silica gel (10g) was added to the solution. After the mixture had been stirred for 1 h, the solvent was removed under reduced pressure. The mixture was dried at 110°C for 2 h, and finally stored in a desiccator until use.

General procedure for the acetylation of alcohols and phenols: A mixture of the alcohol or phenol (10mmol), acetic anhydride (2 equivalent to each hydroxyl group in the alcohols or phenols), silica gel-supported PTA (300mg) and solvent (CH₂Cl₂, CHCl₃ or cyclohexane) was stirred at room temperature or refluxing temperature for the length of time indicated in the Table 1. The progress of the reactions was monitored by thin layer chromatography (TLC). After completion of the reaction, the solvent was evaporated and diethyl ether (15ml) added to the mixture. The catalyst was removed by filtration and washed with diethyl ether (2×10ml). The filtrate was washed with 5% HCl (20ml), 5% NaHCO₃ (20ml) and brine (2×10ml) successively. After drying with anhydrous sodium sulfate, the solvent was evaporated under reduced pressure and the crude product was purified by recrystallisation from 95% ethanol or by column chromatography on silica gel using petroleum ether and diethyl ether to get the pure product.

Benzyl acetate : $\delta_{\rm H}$ 2.07(3H, s, -OCOCH₃), 5.09(2H, s, ArCH₂-), 7.26-7.36(5H, m, -C₆H₅).

2-Phenylethyl acetate: δ_H 2.06(3H, s, –OCOCH_3), 2.32(2H, t, ArCH_2–), 4.83(2H, t, –CH_2–), 7.15-7.38 (5H, m, –C_6H_5).

1-Octadecyl acetate: $\delta_{\rm H}$ 0.89(3H, t, $-CH_3$), 1.27(30H, m, CH₃(CH₂)₁₅-), 1.80(2H, m, $-CH_2CH_2OOC$ CH₃), 4.34(2H, t, $-CH_2OCOCH_3$), 2.02(3H, s, $-OCOCH_3$).

Benzoin acetate: $\delta_{\rm H}$ 7.30–8.01(10H, m, Ar–H), 5.82(1H, s, –CH), 2.03(3H, s, –OCOCH₃).

Cyclohexyl acetate: δ_{H} 1.25–1.60(10H, m, $-C_{6}H_{11}$), 3.02(1H, m, $-CHOOCCH_{3}$), 2.00(3H, s, $-OCOCH_{3}$).

Cholesteryl acetate: $\delta_{H}5.30(1H, d, 6-H)$, $3.51(1H, m, 3\alpha-H)$, $1.18(3H, s, 19-CH_3)$, $0.95(3H, d, 21-CH_3)$, $0.88(6H, d, 26, 27-CH_3)$, $0.65(3H, s, 18-CH_3)$, $2.01(3H, s, -OCOCH_3)$.

4-Methylphenyl acetate: δ_H2.01(3H, s, -OCOCH₃), 2.25(3H, s, -Ar-CH₃), 6.92(2H, d, 2',6'-Ar-H), 7.04(2H, d, 3',5'-Ar-H).

4-*Chlorophenyl acetate*: δ_H1.98(3H, s, –OCOCH₃), 6.98(2H, d, 2',6'–Ar–H), 7.25(2H, d, 3',5'–Ar–H).

2,6-Ditertbutyl-4-methyl phenyl acetate: IR v_{max} (KBr): 2955, 1760, 1600, 1470, 1380, 1100, 870 cm⁻¹; δ_{H} 1.34(18H, s, $-C(CH_3)_3$), 2.32(3H, s, $-CH_3$), 2.36(3H, s, $-OCOCH_3$), 7.11(2H, s, 3,5-Ar-H); m/z(EI): 262(3%, M⁺), 43(100), 57(65), 77(10), 91(15), 105(14), 145(10), 161(8), 205(88), 220(60).

2,4,6-Tritertbutylphenyl acetate: IR ν_{max} (KBr): 2960, 1750, 1600, 1460, 1370, 1110, 900 cm⁻¹; δ_{H} 1.33(9H, s, -4-C(CH₃)₃), 1.37(18H, s, -2,6-C(CH₃)₃), 2.35(3H, s, -OCOCH₃), 7.34(2H, s, -C₆H₂); *m*/*z*(EI): 304(2%, M⁺), 41(55), 43(82), 57(100), 77(5), 91(9), 105(6), 145(2), 231(7), 246(50), 261(30).

This project is supported by NSFC (29872011 and 29572039). Educational Ministry of China, Educational Department of Hebei Province (990104), Science and Technology Commission of Hebei Province.

Received 18 December 2002, accepted 28 March 2003 Paper 02 / 1697

References

(a) T. W. Greene and P.G.M. Wuts, *Protective Groups in Organic Synthesis*, 2nd edn (John Wiley and Sons Inc, New York), 1991, p 87–118; 162-170; (b) T.S. Li, Y.L.Li and X.T. Liang, *Steroids*, 1990, **55**, 263; (c) C.B. Reese, *Protective Groups in Organic Chemistry*; J.F.W. McOmie, ed.; Plenum: London, 1973, 109; (d) P.J. Kocienski, *Protective Groups*; Thieme: New York, 1994, 22; (e) R.C. Larock, *Comprehensive Organic Transformations*, 2nd edn Wiley-VCH: New York, 1999, 1995.

414 J. CHEM. RESEARCH (S), 2003

- 2 (a) R.I. Zhdanov and S.M. Zhenodarova, *Synthesis*, 1975, 222;
 (b) D. Horton, *Org. Synth.*, 1973, 5, 1.
- 3 (a) G. Holfe, V. Steglich and H. Vorbruggen, Angew. Chem., Int. ed Engl., 1978, 17, 569; (b) E.F.V. Scriven, Chem . Soc. Rev, 1983, 12, 129.
- 4 E. Vedejs, N.S. Bennett, L.M. Conn, S.T. Diver, M. Gingras, S. Lin, P.A. Oliver and M.J. Peterson, *J. Org. Chem.*, 1993, 58, 7286.
- 5 R. Borah, N. Deka and J.C. Sarma, J. Chem. Res(S)., 1997, 110.
- 6 A.C. Cope and E.C. Herrich, Org. Synth., 1963, 4, 304.
- 7 T.S. Jin, Y.R. Ma A.H. Zhang and T.S. Li, Synth. Commun., 1998, 28, 3173.
- 8 R.H. Baker and F.G. Bordwell, Org. Synth., 1955, 3, 141.
- 9 J. Iqbal and R.R. Srivastava, J. Org. Chem., 1992, 57, 2001.
- 10 S.V. Pansare, M.G. Malusare and A.N. Rai, *Synth. Commun.*, 2000, **30**, 2587.
- 11 P. Saravanan and V.K. Singh, Tetrahedron Lett., 1999, 40, 2215.
- 12 P.A. Procopiou, S.P.D. Baugh, S.S. Flack and G.G.A. Inglis, Chem. Commun., 1996, 2625.

- 13 S. Chandrasekhar, T. Ramachander and M. Takhi, *Tetrahedron Lett.*, 1998, **39**, 3263.
- 14 K. Ishihara, M. Kubota, H. Kurihara and H. Yamamoto, J. Org. Chem., 1996, 61, 4560.
- 15 G. Sabitha, B.V.S. Reddy, R. Srividya and J. S. Yadav, *Synth. Commun.*, 1999, **29**, 2311.
- 16 Y. Yasuyuki, I. Kusaki and T. Sato, Synlett., 2001, 10, 1584.
- 17 A.X. Li, T.S. Li and T.H. Ding, Chem. Commun., 1997, 1389.
- 18 T.S. Li and A.X. Li, J. Chem. Soc. Perkin. Trans1., 1998, 1913.
- 19 T.S. Jin, Y.R. Ma and T.S. Li, Ind. J. Chem., 1999, 38, 109.
- 20 M.H. Habibi, S. Tangestaninejad, V. Mirkhani and B. Yadollahi, Synth. Commun., 2002, 32, 863.
- 21 (a) Y.X. Lu, Journal of *Zhengzhou Institute of Light Industry*, 1999, **14**, 60; (b) I. V. Kozhevnikov, S. M. Kulikov and N.G. Chukaeve, *et al. React Kinet, Catal. Lett.*, 1992, **47**, 59.
- 22 L. Syper and L.S. Mlochowski, Tetrahedron, 1987, 43, 212.
- 23 J. Buckingham, F. Macdonald, *Dictionary of Organic Compounds*. 1996, 6th edn., Chapman and Hall, New York.